Exact Solution of Petrov Type {3, 1} Metric via Time **Dependent Quasi-Maxwell Equations**

Morteza Yavari

Received: 1 June 2009 / Accepted: 29 July 2009 / Published online: 21 August 2009 © Springer Science+Business Media, LLC 2009

Abstract In this paper, we show that how to apply the time dependent quasi-Maxwell equations for exact solution of Einstein field equations in vacuum for Petrov type {3, 1} metric.

Keywords Petrov type $\{3, 1\}$ metric \cdot Time-dependent quasi-Maxwell equations \cdot Exact solution

1 Introduction

In threading point of view, splitting of spacetime is introduced by a family of timelike congruences with unit tangent vector field, may be interpreted as the world-lines of a family of observers, and it defines a local time direction plus a local space through its orthogonal subspace in the tangent space. Let (M, g) be a 4-dim manifold of a stationary spacetime. Next, we can construct a 3-dim orbit manifold as $\bar{M} = \frac{M}{G}$ with projected metric tensor¹ γ_{ij} by the smooth map $\eta: M \to \overline{M}$ in which $\eta(p)$ denotes the orbit of the timelike Killing vector $\frac{\partial}{\partial r}$ at the point $p \in M$ and G is 1-dim group of transformations generated by the timelike Killing vector of the spacetime under consideration, [1, 2]. The threading decomposition leads to the following splitting of the spacetime distance element, [3, 4]:

$$ds^{2} = g_{\alpha\beta}dx^{\alpha}dx^{\beta} = h(dt - g_{i}dx^{i})^{2} - \gamma_{ij}dx^{i}dx^{j}, \qquad (1)$$

where $\gamma_{ij} = -g_{ij} + hg_ig_j$ with $g_i = -\frac{g_{0i}}{h}$ and $h = g_{00}$. In a spacetime with time dependent metric tensor (1), the gravitational Lorentz force acting on a test particle whose mass m_0 due to time dependent gravitoelectromagnetism² fields as measured by threading observers

M. Yavari (🖂)

Department of Physics, Islamic Azad University, Kashan, Iran

¹Note that the Greek indices run from 0 to 3 while the Latin indices take the values 1 to 3.

²The gravitoelectromagnetism refers to a set of analogies between Maxwell equations and a reformulation of the Einstein field equations in general relativity, [5].

is described by the following equation, we use geometrical units with c = G = 1, [3]:

$$\mathbf{F} = -\frac{{}^{*}\partial \mathbf{p}}{\partial t} + \frac{m_0}{\sqrt{1 - v^2}} \{{}^{*}\mathbf{E}_g + \mathbf{v} \times {}^{*}\mathbf{B}_g\},\tag{2}$$

where $\frac{*\partial}{\partial t} = \frac{1}{\sqrt{h}}\partial_0$ while ∂_0 indicate the time derivative, **v** is velocity vector of test particle and $p^i = \frac{m_0 v^i}{\sqrt{1-v^2}}$ with $v^2 = \gamma_{np} v^n v^p$. Also, we know that the vector $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ has components as $C^i = \frac{e^{ijk}}{\sqrt{\gamma}} A_j B_k$ in which $\gamma = \det(\gamma_{ij})$ and 3-dim Levi-Civita tensor e_{ijk} is antisymmetric in any exchange of indices while $e^{123} = e_{123} = 1$, [4, 6]. In (2), the time dependent gravitoelectromagnetism fields are defined in terms of the gravitoelectric and gravitomagnetic potentials through the following relations

$${}^{*}\mathbf{E}_{g} = -{}^{*}\nabla\Phi_{g} - \frac{\partial\mathbf{g}}{\partial t} \doteq {}^{*}E_{gi} = -{}^{*}\partial_{i}\Phi_{g} - \frac{\partial g_{i}}{\partial t},$$
(3)

$${}^{*}\mathbf{B}_{g} = \sqrt{h} {}^{*}\nabla \times \mathbf{g} \doteq {}^{*}B_{g}^{i} = \frac{e^{ijk}}{2\sqrt{\gamma}} {}^{*}B_{jk}, \tag{4}$$

. . .

where $\Phi_g = \ln \sqrt{h}$, $\mathbf{g} = (g_1, g_2, g_3)$, $^*B_{ij} = \sqrt{h} (g_{j*i} - g_{i*j})$ such that $_{*i} = ^*\partial_i = \partial_i + g_i \partial_0$ and curl of an arbitrary vector in a 3-space with time dependent metric γ_{ij} is defined by $(^*\nabla \times \mathbf{A})^i = \frac{e^{ijk}}{2\sqrt{\gamma}} (A_{k*j} - A_{j*k})$. If we use the time dependent γ_{ij} as the metric tensor, then the Einstein field equations in vacuum case for this spacetime may be written as time dependent quasi-Maxwell equations,³ [3, 7]:

$$^{*}\nabla \cdot ^{*}\mathbf{E}_{g} = ^{*}E_{g}^{2} + \frac{1}{2}^{*}B_{g}^{2} - \frac{^{*}\partial D}{\partial t} - d,$$
(5)

$$^{*}\nabla \times ^{*}\mathbf{B}_{g} = 2(^{*}\mathbf{E}_{g} \times ^{*}\mathbf{B}_{g} + \mathbf{M}), \tag{6}$$

$${}^{*}K_{ij} = -{}^{*}\nabla_{(i}{}^{*}E_{gj)} + {}^{*}E_{gi}{}^{*}E_{gj} + \frac{1}{2}({}^{*}B_{gi}{}^{*}B_{gj} - \gamma_{ij}{}^{*}B_{g}^{2}) - DD_{ij} + 2D_{ik}D_{j}^{k} - {}^{*}B_{k(i}D_{j)}^{k} - \frac{{}^{*}\partial D_{ij}}{\partial t},$$
(7)

where the symbol () denotes the commutation over indices, ${}^{*}K_{ij}$ is 3-dim starry Ricci tensor constructed from 3-dim starry Christoffel symbols as ${}^{*}K_{ij} = {}^{*}\lambda_{ij*k}^{k} - {}^{*}\lambda_{ik*j}^{k} + {}^{*}\lambda_{ij}^{m} {}^{*}\lambda_{km}^{k} {}^{*}\lambda_{ik}^{m} {}^{*}\lambda_{mj}^{k}$ in which ${}^{*}\lambda_{jk}^{i} = {}^{1}_{2}\gamma^{ip}(\gamma_{jp*k} + \gamma_{kp*j} - \gamma_{jk*p})$ and starry covariant derivatives of an arbitrary 3-vector and a tensor are given respectively by the following familiar forms

$$^{*}\nabla_{j}A_{i} = A_{i*j} - ^{*}\lambda_{ij}^{k}A_{k}, \tag{8}$$

$${}^{*}\nabla_{k}T^{ij} = T^{ij}_{*k} + {}^{*}\lambda^{i}_{mk}T^{jm} + {}^{*}\lambda^{j}_{mk}T^{im}.$$
(9)

Also, $d = D_{ij}D^{ij}$ and $M^i = -^*\nabla_j D^{ij} + {}^*\partial^i D$ such that ${}^*\partial^i = \gamma^{in} {}^*\partial_n$ with

$$D_{ij} = \frac{1}{2} \frac{{}^* \partial \gamma_{ij}}{\partial t}, \qquad D^{ij} = -\frac{1}{2} \frac{{}^* \partial \gamma^{ij}}{\partial t}, \qquad D = \frac{{}^* \partial \ln \sqrt{\gamma}}{\partial t}.$$
 (10)

³In a 3-space with time dependent metric γ_{ij} , divergence of a vector is defined as ${}^*\nabla \cdot \mathbf{A} = \frac{1}{\sqrt{\gamma}} (\sqrt{\gamma} A^i)_{*i}$.

2 The Exact Solution of Petrov Type {3, 1} Metric

The line element corresponding to the Petrov type {3, 1} is written as, [8, 9]:

$$ds^{2} = dt^{2} - n_{2}t^{n_{1}}e^{-2z}dx^{2} - t^{n_{2}}e^{4z}dy^{2} - n_{5}t^{n_{3}}dz^{2} - 2n_{6}t^{n_{4}}e^{-z}dxdz,$$
(11)

where n_1, \ldots, n_6 are unknown real constants. Firstly, a simple calculation shows that all components of gravitoelectromagnetism fields are zero. Also, we can deduce

$$D = \frac{n_2 + mp}{2t},\tag{12}$$

$$(D_{ij}) = \frac{1}{2t} \begin{pmatrix} n_1 n_2 t^{n_1} e^{-2z} & 0 & n_4 n_6 t^{n_4} e^{-z} \\ 0 & n_2 t^{n_2} e^{4z} & 0 \\ n_4 n_6 t^{n_4} e^{-z} & 0 & n_3 n_5 t^{n_3} \end{pmatrix},$$
(13)

$$(D^{ij}) = \frac{m}{2t} \begin{pmatrix} n_5 t^{n_3} e^{2z} (mp - n_3) & 0 & n_6 t^{n_4} e^{z} (n_4 - mp) \\ 0 & \frac{n_2}{m t^{n_2} e^{4z}} & 0 \\ n_6 t^{n_4} e^{z} (n_4 - mp) & 0 & n_2 t^{n_1} (mp - n_1) \end{pmatrix},$$
(14)

where $m = \frac{1}{n_2 n_5 t^{n_1+n_3} - n_6^2 t^{2n_4}}$ and $p = (n_1 + n_3)n_2 n_5 t^{n_1+n_3} - 2n_4 n_6^2 t^{2n_4}$. In this step, with an elementary calculation, the nonvanishing components of 3-dim starry Christoffel symbols are determined as below

Then, with applying these symbols, the starry Ricci tensor can be calculated as follows

$${}^{*}K_{ij} = \begin{cases} n_{2}^{2}mt^{2n_{1}}e^{-2z}, & i = j = 1, \\ -2n_{2}mt^{n_{1}+n_{2}}e^{4z}, & i = j = 2, \\ n_{2}n_{6}mt^{n_{1}+n_{4}}e^{-z}, & i, j = 1, 3, \\ n_{6}^{2}mt^{2n_{4}} - 5, & i = j = 3, \\ 0, & \text{otherwise.} \end{cases}$$
(16)

For later use, we will need the following components

$$M^{1} = \frac{1}{2} n_{6} m t^{n_{4}-1} e^{z} (mp - 2n_{2}),$$
(17)

$$M^2 = 0,$$
 (18)

3171

$$M^{3} = n_{2}m^{2}t^{n_{1}-1}\left\{\frac{n_{1}+n_{2}}{m} - p + \frac{1}{2}n_{2}n_{5}t^{n_{1}+n_{3}}(n_{3}-n_{1}) + n_{6}^{2}t^{2n_{4}}(n_{1}-n_{4})\right\}.$$
 (19)

On the other hand, the time dependent quasi-Maxwell equations reduce to

$$d + \frac{\partial D}{\partial t} = 0, \tag{20}$$

$$M^1 = 0, \tag{21}$$

$$M^3 = 0,$$
 (22)

$$^{*}K_{ij} + DD_{ij} - 2\gamma^{nk}D_{ik}D_{nj} + \frac{\partial D_{ij}}{\partial t} = 0.$$
⁽²³⁾

We now start with (21) and it means that $mp = 2n_2$ which implies that $n_2 = n_4$ and $n_1 + n_3 = 2n_2$. With applying previous results and using (16), we see that the (23), after a few simplifications, expand to

$$(i = j = 1)$$
 : $a_2 = (n_3 - n_2)^2 a_1 + n_2 \left(1 - \frac{3n_2}{2}\right),$ (24)

$$(i = j = 1, 3): \quad a_2 = (n_3 - n_2)^2 a_1 - n_3(n_3 + 1) + 2n_2(1 - 2n_2) + \frac{7n_2n_3}{2},$$
 (25)

$$(i = j = 2)$$
 : $a_2 = \frac{1}{4}n_2(3n_2 - 2),$ (26)

$$(i = j = 3) : a_1 = 6 + \frac{1}{2} n_5 t^{n_3 - 2} \left\{ (n_3 - n_2)^2 (a_1 - 1) + n_3 \left(1 - \frac{3n_2}{2} \right) \right\}.$$
 (27)

In the above $a_1 = \frac{n_2 n_5}{n_2 n_5 - n_6^2}$ and $a_2 = \frac{2n_2 t^{2-n_3}}{n_2 n_5 - n_6^2}$. As a result, from (26) we can infer that $n_3 = 2$. Next, by comparing (24) and (25), one can derive $n_2 = \frac{6}{5}$ and $n_2 = 2$. But, it is easy to check that case $n_2 = 2$ yielding a contradiction. Therefore, we have $n_1 = \frac{2}{5}$ and $n_4 = \frac{6}{5}$. Then, from (26) we get that $a_2 = \frac{12}{25}$. Similarly, from (24) or (25) one learns that $a_1 = \frac{9}{4}$. Let us now replacing the value of a_1 into (27) and so leads to $n_5 = \frac{75}{8}$. Furthermore, with the help of definition a_1 or a_2 , we conclude $n_6 = \frac{5}{2}$. Also, it can be shown that (20) and (22) are trivial. Finally, we can rewrite the metric (11) as follows

$$ds^{2} = dt^{2} - \frac{6}{5}t^{\frac{2}{5}}e^{-2z}dx^{2} - t^{\frac{6}{5}}e^{4z}dy^{2} - \frac{75}{8}t^{2}dz^{2} - 5t^{\frac{6}{5}}e^{-z}dxdz.$$
 (28)

References

- 1. Boersma, S., Dray, T.: Gen. Relativ. Gravit. 27, 319 (1995)
- Jantzen, R.T., Carini, P.: In: Ferrarese, G. (ed.) Classical Mechanics and Relativity: Relationship and Consistency, p. 185. Bibliopolis, Naples (1991)
- 3. Nouri-Zonoz, M., Tavanfar, A.R.: J. High Energy Phys. 02, 059 (2003)
- 4. Landau, L.D., Lifishitz, E.M.: Classical Theory of Fields, 4th edn. Pergamon, Oxford (1975)
- 5. Jantzen, R.T., Carini, P., Bini, D.: Ann. Phys. 215, 1 (1992)
- 6. D'Inverno, R.: Introduction Einstein's Relativity. Clarendon, Oxford (1992)
- 7. Yavari, M.: Nuovo Cimento B **124**(2), 197 (2009)
- 8. Siklos, S.T.C.: J. Phys. A, Math. Gen. 14, 395 (1981)
- 9. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein's Field Equations. Cambridge University Press, Cambridge (2003)